团聚细胞计数的应用解决方案:Cell Type参数优化
这些实验中使用的是FreeStyle 293-F 细胞(Thermo Fisher,Cat.编号:R79007)。将 HEK 悬浮细胞在含有FreeStyle 293(30 mL)表达培养基的 50 mL Falcon 管中培养,每 3-4 天传代培养一次,接种细胞密度为 0.2x106 个细胞/mL。它们在 37°C、250 rpm 和 5% CO2&苍产蝉辫;浓度下孵育。
使用培养 4 天的细胞样品进行初始测量,在Normal模式下使用Mammalian Cell Type重复测量 5 次。然后结果被导出(每 10 张图像照片保存一张)并离线重新分析。为了重新分析,基于默认的Mammalian Cell Type创建了另外两个Cell Type,但将去团聚度设置为Low和High。为了研究不同去团聚度设置的有效性,比较了这三种Cell Type总细胞密度和活细胞密度以及活率的结果。
之后,开始用 HEK 293-F 细胞进行新鲜培养,并在第 0、1、2、3 和 6 天取样。然后,测试了其他采样参数,因为所有日期的样品都用默认的Mammalian Cell Type,以及将Aspiration和Mixing Cycles增加到10次的Cell Type。在所有采样日,将细胞培养液用 5 mL 移液器混合 2 次,然后将 5 mL 细胞培养液转移到 15 mL Facon管中。接着,用 1000 μL 移液器将样品再混合 3 次,再将 3 x 500 μL 细胞样品转移到 Vi-CELL XR 细胞计数和活率分析仪样品管中,以及将 6 x 200 μL 细胞样品转移到 Vi-CELL BLU 96 孔板中。Vi-CELL XR 细胞计数和活率分析仪上的样品,使用图 1 所示的Cell Type分析;在Vi-CELL BLU细胞计数和活率分析仪上,两种Cell Type交替进行。然后,将 2 x 10 μL 细胞样品与台盼蓝 1:1 混合并转移到一次性血球计数板中手动计数。
图1:Vi-CELL XR上的分析设置,选择的设置类似于Vi-CELL BLU上的设置
然后,在Vi-CELL BLU细胞计数和活率分析仪上运行的样品以High Decluster degree重新分析,在 Vi-CELL BLU 细胞计数和活率分析仪上共生成4种不同的细胞计数结果,以与 Vi-CELL XR细胞计数和活率分析仪的结果和手动计数结果进行比较。
表1. Vi-CELL BLU分析HEK 293-F的Cell Type,Mammalian Cell Type作为其他3个Cell Types的模板。
在三个Decluster degree下(Low,Normal和High)得到的平均总细胞密度和活细胞密度(分别为 TCD 和 VCD)和活率进行了比较(图2)。更高的去团聚度使得TCD 和 VCD 值均明显增加(R2 > 0.98)。然而,使用较低或较高的Decluster degree时,细胞活率却并不显著增加或减少。
图2:Vi-CELL BLU使用不同Decluster degree设置分析HEK 293-F的结果。平均总细胞和活细胞密度显示在左轴上,平均活率显示在右轴上。误差线表示标准差。
表 2 中的图像显示了Decluster degree如何影响样品分析,从而影响细胞浓度结果。所选图像是图2中其中一个测量样品的图像(部分),并且很好地表示了细胞样品的状态。如前所述,HEK 293 F细胞倾向于形成团聚体,而这些团聚体中的细胞可能难以计数准确。当 Decluster degree 设置为 low 时,某些团聚将不再被解聚,并且标有蓝色圆圈,表示Vi-CELL软件错误地将它们识别为单个颗粒,因为其尺寸较大,根据所选Cell Type参数未归为一个细胞。通过更高的去团聚度,可以分析更多这些团聚细胞,从而产生单个团聚标记为Normal Decluster degree,所有团聚细胞均在High declustering下进行分析。更高的Decluster degree设置会导致识别出额外的细胞,可能导致人为地提高细胞密度,因为单个细胞可能(几乎)分裂成两个或多个颗粒。这些颗粒是被忽略还是算作活细胞或死细胞取决于其他Cell Type参数,例如大小、圆度和亮度。因此,优化Cell Type设置对于获得准确的结果很重要。
表2. 不同Decluster degree设置的分析结果,随着Declustering增加,更多的细胞团聚被分析,细胞团聚体中更多的细胞被识别。
请注意,Cluster count不受Decluster degree的影响。对于“Low"和“High"设置,每次测量平均计数 1.6 个Clusters。Cluster count指示在样本中发现了多少个过大的细胞团聚体。这些Cluster用红色框标记,并且无论Decluster degree如何,都全部排除在分析之外。因此,高的Cluster count是大细胞团聚体的良好指示,需要在培养处理或样品制备方面进行额外优化,以获得准确的细胞计数结果。
最终,在优化Cell Type设置时,Vi-CELL BLU 软件还提供了增加Aspiration和Mixing cycles的可能性。增加Aspiration和Mixing的影响评估,是使用默认的Mammalian Cell Type,将其中的Aspiration和Mixing cycles都设为10,每天对 HEK 293-F 细胞样品进行采样,并一式三份测定细胞密度。之后,使用表1所述的High Decluster degree重新分析所有测量值。将结果与使用Vi-CELL XR细胞计数和活率分析仪及手动计数获得的值进行比较(图3)。
图3: Vi-CELL BLU用4种不同Cell Types检测的总细胞密度和活率(蓝-灰色),Vi-CELL XR(红色)和手动细胞计数(绿色)。误差线表示标准差。
图 3 显示了 Vi-CELL XR细胞计数和活率分析仪、血球计数板、Vi-CELL BLU 细胞计数和活率分析仪(使用默认Mammalian Cell Type)测试6天得到的细胞密度和活率具有可比性。此外,Mixing增加和/或High declustering的Cell Type会导致更高的细胞密度。在第3天,测量的平均 TCD 介于 2.81 – 4.12 百万个细胞/mL 之间,分别使用默认的 Mammalian 和 Mammalian A10M10 High decluster。因此,与默认设置相比,更改两个参数后结果增加了 47%。
然而,在第6天存活率下降到~70%,而且手动计数的TCD明显比自动细胞计数仪的TCD更高。表 3 中的图像(通过显微镜显示 Neubauer 分析室)为这种偏差提供了清晰地解释,因为与第 3 天相比,第 6 天的细胞样品中显示有更多的细胞聚集体。这些细胞聚集体很难计数,在分析过程中大的团聚细胞将被全部忽略。
表3: 第3和第6天HEK 293-F细胞计数显微镜下的照片。第6天可以看到更多的细胞团聚体,细胞活率降低。
专注于培养的前 3 天(图 4)可以进一步研究不同的Cell Type设置如何影响计数结果。第 3 天血球计数板图像(表 3)显示,到目前为止,细胞主要以小聚集体或单细胞形式生长。仔细观察Cluster count可以发现,Clusters的平均数量从第 1 天的 0.7 个增加到第 2 天的 3.7 个和第 3 天的 8.7 个。同时,更高的Mixing和Aspiration cycles的效果似乎有所增加,第 1 天的 TCD 增加了 4%,而第 2 天和第 3 天分别增加了 17% 和 25%。在Mammalian A10M10 High decluster设置下的结果一直是最高浓度。
图4: HEK培养的前3天。在 Vi-CELL BLU 上以蓝灰色以及 Vi-CELL XR(红色)和手动计数(绿色)测定四种不同的细胞密度和活率。误差线表示标准差。
总之,每日采样结果进一步证明了正确Cell Type设置的重要性。仅改变三个参数就导致 TCD 增加 47%。测量团聚的HEK细胞时,调整Decluster degree和Mixing/Aspiration cycles可以得到更高的TCD。然而,第6天的数据(图3)表明,应避免过度团聚的细胞样品,因为与手动计数相比,所有Cell Type的结果都明显较低。
● 参考资料:
1. Cell Culture Problems: Cell Clumping – Causes, How to Unclump Cells & How to Avoid Cell Clumping. akadeum.co m. [Online] Akadeum Life Sciences, February 2021. [Cited: 25 July 2023.]
2. Cell Clumping Troubleshooting. Sigma Aldrich. [Online] Merck KGaA. [Cited: 25 July 2023.]
3. Biomass and Aggregation Analysis of Human Embryonic Kidney 293 Suspension Cell Cultures by Particle Size Measurement. Yung-Shyeng Tsao, Russell G. G. Condon, Eugene J. Schaefer, David A. Lindsay, and Zhong Liu. s.l. : Biotechnology progress, 2000, Bd. 16(5). 809-814.
4. ISO 20391-1. Biotechnology — Cell counting — Part 1: General guidance on cell counting methods. s.l. : ISO/TC 276, Biotechnology, 2018-01. First edition. ISO 20391-1:2018(E). 5. Cluster Count Analysis and Sample Preparation Considerations for the Vi-CELL BLU Cell Viability Analyzer. Wu, Andrew. s.l. : Beckman Coulter Life Sciences, 2023. 2023-GBL-EN-101754.
5. Cluster Count Analysis and Sample Preparation Considerations for the Vi-CELL BLU Cell Viability Analyzer. Wu, Andrew. s.l. : Beckman Coulter Life Sciences, 2023. 2023-GBL-EN-101754.